The 5΄ UTR of the type I toxin ZorO can both inhibit and enhance translation
نویسندگان
چکیده
Many bacterial type I toxin mRNAs possess a long 5΄ untranslated region (UTR) that serves as the target site of the corresponding antitoxin sRNA. This is the case for the zorO-orzO type I system where the OrzO antitoxin base pairs to the 174-nucleotide zorO 5΄ UTR. Here, we demonstrate that the full-length 5΄ UTR of the zorO type I toxin hinders its own translation independent of the sRNA whereas a processed 5΄ UTR (zorO Δ28) promotes translation. The full-length zorO 5΄ UTR folds into an extensive secondary structure sequestering the ribosome binding site (RBS). Processing of the 5΄ UTR does not alter the RBS structure, but opens a large region (EAP region) located upstream of the RBS. Truncation of this EAP region impairs zorO translation, but this defect can be rescued upon exposing the RBS. Additionally, the region spanning +35 to +50 of the zorO mRNA is needed for optimal translation of zorO. Importantly, the positive and negative effects on translation imparted by the 5΄ UTR can be transferred onto a reporter gene, indicative that the 5΄ UTR can solely drive regulation. Moreover, we show that the OrzO sRNA can inhibit zorO translation via base pairing to the of the EAP region.
منابع مشابه
The ZorO-OrzO type I toxin–antitoxin locus: repression by the OrzO antitoxin
Type I toxin-antitoxin loci consist of two genes: a small, hydrophobic, potentially toxic protein, and a small RNA (sRNA) antitoxin. The sRNA represses toxin gene expression by base pairing to the toxin mRNA. A previous bioinformatics search predicted a duplicated type I locus within Escherichia coli O157:H7 (EHEC), which we have named the gene pairs zorO-orzO and zorP-orzP. We show that overpr...
متن کاملFusion of Cholera toxin B subunit (ctxB) with Shigella dysenteriae type I toxin B subunit (stxB), Cloning and Expression that in E. coli
Background and Objective: Shiga toxin (STx) is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB) is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3). Cholera toxi...
متن کاملThe 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding
CDKN2A/p16INK4a is an essential tumor suppressor gene that controls cell cycle progression and replicative senescence. It is also the main melanoma susceptibility gene. Here we report that p16INK4a 5'UTR mRNA acts as a cellular Internal Ribosome Entry Site (IRES). The potential for p16INK4a 5'UTR to drive cap-independent translation was evaluated by dual-luciferase assays using bicistronic and ...
متن کاملInsulin-like growth factor I gene polymorphism associated with growth traits in beluga (Huso huso) fish
The aim of the present study was to detect polymorphism in Insulin like growth factor-I (IGF-I) gene of beluga (Huso huso) fish using PCR-SSCP technique and also investigation of its association with growth traits (condition factor, body length and weight). A total of 150 specimens of beluga were randomly selected and DNA was isolated from caudal fin using modified salting out method. Then two ...
متن کاملA small yeast RNA selectively inhibits internal initiation of translation programmed by poliovirus RNA: specific interaction with cellular proteins that bind to the viral 5'-untranslated region.
We have purified, sequenced, and prepared a synthetic clone of a small (60-nucleotide) RNA molecule from the yeast Saccharomyces cerevisiae that had previously been isolated on the basis of its ability to selectively block the translation of poliovirus mRNA. RNA derived from the clone by transcription with T7 RNA polymerase appears to block translation initiation by internal ribosome entry (cap...
متن کامل